新闻动态
联系我们
广东尚菱视界科技有限公司
400 电话:400-800-3378
地  址:东莞市东城立新犬眠岭工业区7栋A座3层303号(良信大厦)
电  话:0769-81256261
传  真:0769-81256260
联 系 人:黄先生
手  机:18998033070
电子邮箱:marketing@slvt.cn
主  营:机器视觉 | 工业镜头 | 视觉识别系统
4会展中心
您的位置: 首页 ->  会展中心 -> 机器视觉系统的关键技术
机器视觉系统的关键技术
机器视觉系统的关键技术
  机器视觉系统是综合现代计算机、光学、电子技术的高科技系统。机器视觉技术通过计算机对系统摄取的图像进行处理,分析其中的信息,并做出相应的判断,进而发出对设备的控制指令。机器视觉系统的具体应用需求千差万别,视觉系统本身也可能有多种不同的形式,但都包括以下过程:
  图像采集 利用光源照射被观察的物体或环境,通过光学成像系统采集图像,通过相机和图像采集卡将光学图像转换为数字图像,这是机器视觉系统的前端和信息来源。
  图像处理和分析 计算机通过图像处理软件对图像进行处理,分析获取其中的有用信息。如PCB板的图像中是否存在线路断路、纺织品的图像中是否存在疵点、文档图像中存在哪些文字等。这是整个机器视觉系统的核心。
判断和控制 图像处理获得的信息最终用于对对象(被测物体、环境)的判断,并形成对应的控制指令,发送给相应的机构。如摄取的零件图像中,计算零件的尺寸是否与标准一致,不一致则发出报警,做出标记或进行剔除。
在整个过程中,被测对象的信息反映为图像信息,进而经过分析,从中得到特征描述信息,最后根据获得的特征进行判断和动作。最典型的机器视觉系统一般包括: 光源、光学成像系统、相机、图像采集卡、图像处理硬件平台、图像和视觉信息处理软件、通信模块。

  总体上,一个成功的机器视觉系统需要重点解决图像采集(包括光源、光学成像、数字图像获取与传输)、图像处理分析几个环节的关键技术。
  照明设计
  照明是机器视觉系统中极其重要而又容易为人忽视的环节。其设计是机器视觉系统设计的重要步骤,直接关系着系统的成败和性能。因为照明直接作用于系统的原始输入,对输入数据质量的好坏有直接的影响。光源决不仅仅是为了照亮物体,通过有效的光源设计可以令需要检测的特征突出,同时抑制不需要的干扰特征,给后端的图像处理带来极大的便利。而不恰当的照明方案会造成图像亮度不均匀,干扰增加,有效特征与背景难以区分,令图像处理变得极其困难,甚至成为不可能完成的任务。
  照明设计主要包括三个方面: 光源、目标和环境的光反射和传送特性、光源的结构。由于被测对象、环境和检测要求千差万别,因而不存在通用的机器视觉照明设备,需要针对每个具体的案例来设计照明的方案,要考虑物体和特征的光学特性、距离、背景,根据检测要求具体选择光的强度、颜色和光谱组成、均匀性、光源的形状、照射方式等。
  照明设计是一项非常复杂的工作,不仅需要理论知识和分析能力,也常常需要反复的试验和调整。“光源是基准,打光是艺术”,这句话道出了照明设计在机器视觉系统中的重要地位。由此也催生了一批以生产光源著称的厂商,如CCS、Moritex、东冠科技。国内如凌云公司等系统集成商也开始开发自主的光源产品。
  光学成像系统与相机
  机器视觉系统中,镜头相当于人的眼睛,其主要作用是将目标的光学图像聚焦在图像传感器(相机)的光敏面阵上。视觉系统处理的所有图像信息均通过镜头得到,镜头的质量直接影响到视觉系统的整体性能。一旦信息在成像系统有严重损失,在后面的环节中试图恢复是非常困难的。合理选择镜头、设计成像光路是视觉系统的关键技术之一。
  镜头成像或多或少会存在畸变。较大的畸变会给视觉系统带来很大困扰,在成像设计时应对此有详细的考虑,包括选用畸变小的镜头,有效视场只取畸变较小的中心视场等。镜头另一个特性是其光谱特性,主要受镜头镀膜的干涉特性和材料的吸收特性影响。要求尽量做到镜头最高分辨率的光线应与照明波长、CCD器件接受波长相匹配,并使光学镜头对该波长的光线透过率尽可能提高。在成像系统中选用适当的滤光片可以达到一些特殊的效果。另外,成像光路的设计还需要重视各种杂散光的影响。

  相机是一个光电转换器件,它将光学成像系统所形成的光学图像转变成视频/数字电信号。相机通常由核心的光电转换器件、外围电路、输出/控制接口组成。目前最常用的光电转换器件为CCD,其特点是以电荷为信号,而不像其他器件输出电流或者电压信号。上世纪90年代,一种新的图像传感器开始兴起,这种相机称为CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)相机。
  对相机除了考察其光电转换器件外,还应考虑系统速度、检测的视野范围、系统所要达到的精度等因素。
  相机输出的模拟视频信号并不能为计算机直接识别,图像采集卡通过对模拟视频信号的量化处理将模拟视频信号数字化,形成计算机能直接处理的数字图像,并提供与计算机的高速接口。图像采集卡需要实时完成高速、大数据量的图像数据采集,必须与相机协调工作,才能完成特定的任务。除A/D转换外,图像采集卡还具备其他一些功能,包括:
  ● 接收来自数字相机的高速数据流,并通过计算机高速总线传输至系统存储器;
  ● 对多通道图像接收、处理和重构;
  ● 对相机及系统其他模块进行功能控制。
  图像和视觉信息处理
  上述机器视觉系统的前端环节,包括光源、镜头、相机等,都是为图像和视觉信息处理模块准备素材。这一模块才是机器视觉系统的关键和核心,它通过对图像的处理、分析和识别实现对特定目标和特征的检测。这一模块包括机器视觉处理软件和处理硬件平台两个部分,其中视觉处理软件可以分为图像预处理和特征分析理解两个层次。图像预处理包括图像增强、数据编码、平滑、锐化、分割、去噪、恢复等过程,用于改善图像质量。图像特征分析理解是对目标图像进行检测和各种物理量的计算,以获得对目标图像的客观描述,主要包括图像分割、特征提取(几何形状、边界描述、纹理特性)等。
  机器视觉中常用的算法包括: 搜索、边缘(Edge)、Blob分析、卡尺工具(Caliper Tool)、光学字符识别、色彩分析。
  优秀的机器视觉软件可对图像中目标特征进行快速而准确的检测,对图像的适应性强; 而不好的软件则存在速度慢、结果不准确、鲁棒性差的缺点。
咨询黄工

微信电话

手机专线

189-9803-3070

微信号

微信号

slv400-800-3378

邮箱

电子邮箱

2048137686@qq.com

尚菱视界二维码
扫扫关注更多
关闭